
www.it-ebooks.info

http://www.it-ebooks.info/

Excel Programming
with VBA Starter

Get started with programming in Excel using Visual Basic
for Applications (VBA)

Robert Martin

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Excel Programming with VBA Starter

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1171012

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-844-4

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits
Author

Robert Martin

Reviewers

Jan Karel Pieterse

Peter M Taylor

Acquisition Editor

Alex Newbury

Commissioning Editor

Meeta Rajani

Technical Editor

Vrinda Amberkar

Project Coordinator

Shraddha Bagadia

Proofreader

Aaron Nash

Indexer

Hemangini Bari

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

Cover Image

Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ÊÊ Fully searchable across every book published by Packt

ÊÊ Copy and paste, print and bookmark content

ÊÊ On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Excel Programming with VBA Starter	 1

So, what is VBA?	 3
The basic features of VBA	 3
What kind of things can you do with it?	 3
How can you use this technology within your existing projects?	 3

Recording a macro, adding modules, browsing objects, and variables	 4
Recording a macro	 4

Option 1 – Recording a macro from the status bar	 4
Option 2 – Recording from the Developer tab	 4

Executing your code	 6
Saving a workbook containing macros	 7
Adding a module	 8
Browsing objects	 8
Working with variables	 9
The Immediate window	 11
And that's it	 12

Quick start – VBA programming	 13
Working with loops	 13

Method 1 – For-Next loops	 13
Method 2 – For Each-Next Loops	 15
Method 3 – Do-While and Do-Until loops	 17

Dimensioning and instantiating objects	 20
Subroutines and user-defined functions	 23

Subroutines	 23
Functions	 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Top features you'll want to know about	 31
Enumeration	 31
Classes	 32
External libraries	 40

People and places you should get to know	 44
Official sites	 44
Resources	 44
Articles and tutorials	 44
Community	 44
Blogs	 44
Twitter	 45

Index	 47

www.it-ebooks.info

http://www.it-ebooks.info/

Excel Programming
with VBA Starter

Welcome to Excel VBA Starter. This book has been especially created to provide
you with all the information that you need to get up to speed with programming
with VBA (Visual Basic for Applications). You will learn the basics of VBA, get
started with building your first VBA code, create user-defined functions to work
out complex calculations, and see the tricks of the trade when it comes to using
VBA with Excel.

This document contains the following sections:

So what is VBA? – find out what VBA actually is, what you can do with it, and
why it's so great.

Recording a macro, adding modules, browsing objects, and variables – learn how
to record a macro, add modules, browse for objects available in your project,
and finally what variables are useful for.

Quick start: VBA programming – this section will get you started on programming
with VBA. Here you will learn how to perform some core tasks in VBA. Such
tasks include using loops, dimensioning objects, and creating and categorizing
User-defined Functions (UDFs).

Top features you need to know about – VBA gives you infinite possibilities when
it comes to creating your own solutions. In this section, you will learn some key
concepts such as enumeration, classes (defining properties and methods), and
referencing external libraries, in particular how to manipulate files and folders.

People and places you should get to know – in this day and age, it is impossible to
live without the Internet and it is here that you can find resources as well as help
for your VBA woes. This section provides you with many useful links to the project
page and forums, as well as a number of helpful articles, tutorials, blogs, and the
Twitter feeds of VBA super-contributors.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3

Excel Programming with VBA Starter

So, what is VBA?
In this section, you will get to know a bit about VBA, its basic features, what you can do with
it, and how you can put it to work with a view to facilitating your daily work, by automating
common tasks.

The basic features of VBA
Visual Basic for Applications (VBA) is a programming language built into Microsoft Office
applications. As you improve your skills in any application from the Office System, you will
eventually realize that although Microsoft Office applications offer a large number of tools, they
do not offer everything you need to perform your daily chores. Such chores may include creating
a corporate custom-format, a custom function that calculates commission payments, and so on.

Thus, VBA works as a gap-filler; in other words, its main purpose is to ensure that you can do
whatever you need to do in your job.

What kind of things can you do with it?
Once you have pushed your experience using the Office application to the limits and you can
no longer get your job done due to a lack of built-in tools, using VBA will help avert frustrations
you may encounter along the way. VBA enables you to build custom functions, also called
User-defined Functions (UDFs), and you can automate tedious tasks such as defining and
cleaning formats, manipulate system objects such as files and folders, as well as work together
with Windows as a combined system, through its Application Programming Interface (API),
and other applications by referencing their object libraries or Dynamic-link Libraries (DLLs).

Of course you can also use VBA to manipulate the Office application that hosts your code. For
example, you can customize the user interface in order to facilitate the work you and others do.

An important thing to remember, though, is that the VBA code that you create is used within
the host application. In our case, the code will run within Excel. Such VBA programs are not
standalone, that is, they cannot run by themselves; they need the host application in order to
operate correctly.

How can you use this technology within your existing
projects?
You can use VBA in two different ways. The first, and most common way is to code directly into
your VBA project. For example, you may have an Excel workbook with some custom functions that
calculate commissions. You can add modules to this workbook and code the UDFs in this module.

Another option would be to save the workbook as an Addin. An Addin is a specialized document
that hosts the code and makes it available to other workbooks. This is very useful when you need
to share the solutions you develop with other workbooks and co-workers.

www.it-ebooks.info

http://www.it-ebooks.info/

4

Excel Programming with VBA Starter

Recording a macro, adding modules, browsing
objects, and variables
Before you get your hands "dirty" with coding in VBA, there are a few things you need to know.
These things will help when it comes to coding. In this section, you will learn how to:

ÊÊ Record a macro

ÊÊ Add modules

ÊÊ Browse objects

ÊÊ Get some background on declaring variables

We will start with macro recording, a feature which is available in most Office applications.

Recording a macro
A macro, in Office applications, is a synonym for VBA code. In Excel, we can record almost any
action we perform (such as mouse clicks and typing), which in turn is registered as VBA code.
This can come in handy when we need to discover properties and methods related to an object.
Let us now have a look at some ways you can record a macro in Excel. There are two options:

1.	 Recording a macro from the status bar.

2.	 Recording from the Developer tab.

Option 1 – Recording a macro from the status bar
From the status bar, click on the Record Macro button. If the button is not visible, right-click on
the status bar and from the pop-up menu, choose the Macro Recording option, as shown in the
following screenshot:

Option 2 – Recording from the Developer tab
Now that you know how to record a macro from the status bar, let us check another option. This
option requires that you activate the Developer tab. In order to activate it, assuming it is not
active yet, follow these steps:

1.	 Go to File | Excel Options | Customize Ribbon.

www.it-ebooks.info

http://www.it-ebooks.info/

5

Excel Programming with VBA Starter

2.	 Under Main Tabs check the Developer checkbox, as shown in the following screenshot:

3.	 Next, activate the Developer tab and click on Record Macro, as shown in
the following screenshot:

4.	 Once the macro recording process starts, you will be prompted to enter some basic
information about the macro such as the macro name, the shortcut key, location
where the macro should be stored, and its description. The following screenshot
shows these options filled out:

5.	 Once the macro has been recorded, you can access its container module by pressing,
simultaneously, the Alt + F11 keys. Alternatively, you can click on the Visual Basic
button in the Developer tab. This button is to the left of the Record Macro button
introduced previously. This will open the Visual Basic Editor (VBE), where all the VBA
code is kept.

www.it-ebooks.info

http://www.it-ebooks.info/

6

Excel Programming with VBA Starter

The VBE is the tool we use to create, modify, and maintain any code we write or record.
The following screenshot shows the VBE window with the project explorer, properties,
and code window visible:

6.	 If upon opening the VBE, the VBA project explorer window is not visible, then follow
these steps:

1.	 Go to View | Project Explorer.

2.	 Alternatively, press the Ctrl + R keys simultaneously.

7.	 If, on the other hand, the VBA project explorer is visible, but the code window is not,
you can choose which code window to show.

8.	 Suppose you are interested in the content of the module you've recorded from the
project explorer window, follow these step to show the module window:

1.	 Click on View | Code.

2.	 Alternatively, press F7.

Executing your code
Once you have recorded your macro, if you have added a shortcut to it, then you will be able to
run the code by using this keyboard combination.

However, if you are coding directly into the container object (a user form, standard module, class
module, and so on), then you may have to use different methods in case there is no shortcut to
your procedures.

Here are some methods you can use to execute your code (all of them assume you have the
Visual Basic Editor open):

ÊÊ Pressing the function key F5: Place the cursor inside the procedure you wish to execute
and press the function key F5. This will run your entire procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

7

Excel Programming with VBA Starter

ÊÊ Pressing the function key F8: When you press the function key F8, you will step into
your code. This means that each line will be executed only when you press this key.
This is a great method if you need to check line by line within your code or a section
of your code.

ÊÊ Pressing the Ctrl + F8 keys simultaneously: This will force the code run until it finds the
mouse cursors placed in your code. The cursor is the blinking beam that represents your
mouse pointer.

ÊÊ Call the code from the Immediate window: See the Immediate window section in this
guide for instructions on how this is done.

ÊÊ Click on the "play" button: On the standard toolbar, click on the "play" button. This has
the same effect as pressing the function key F5. If the toolbar is not visible, go to View |
Toolbars | Standard.

.

Saving a workbook containing macros
Before you get too excited with coding in VBA, be aware that Excel has specific file formats
which are appropriate for specific tasks. The default file format does not allow you to save
embedded macros in it. This format ends with the extension .xlsx. Any macros placed in
such a file will be wiped out.

When it is time to save your Excel workbook, you must select the Excel Macro-Enabled
Workbook (*.xlsm) type (which ends with the extension xlsm). The open format (xlsm)
is the preferred format. However, you can also use the binary format (xlsb) or, to ensure
the code can be run in older versions of Excel, you can use the xls format:

You can easily distinguish the files by their desktop icons. The macro-enabled workbook has an
exclamation mark, while the macro-free version does not.

www.it-ebooks.info

http://www.it-ebooks.info/

8

Excel Programming with VBA Starter

Adding a module
You add code to the code window of any object. These objects can be the workbook itself (also
called ThisWorkbook; see the screenshot in the Immediate window section), the worksheet
object, user forms, modules, and class modules. Your choice will depend on the usage of the
code. If the code needs to be public, then you should add it to a module.

In order to add a module, follow these steps:

1.	 Go to Insert | Module.

2.	 Alternatively, right-click anywhere in the Project Explorer window and from the pop-up
menu, go to Insert | Module.

Browsing objects
The Object Browser is a very important tool that you can use to check for the properties and
methods of an object as well as any other information related to that object.

In order to access the Object Browser, follow these steps:

1.	 Go to View | Object Explorer.

2.	 Alternatively, press the function key F2 on your keyboard.

Once the Object Browser is open, you will be presented with the window shown in the following
screenshot. From the first drop-down list you can choose which library you want to browse
to. You can browse all libraries in one go or you can browse a specific library. In the following
example, the active library is Excel. Below it, there is a list with all the classes (objects) available
in the Excel object library. Currently, the active class is Range and to its right you have all the
properties and methods that are members of this class:

The methods are represented by a small "running brick" whereas the properties are represented
by a hand holding a card.

www.it-ebooks.info

http://www.it-ebooks.info/

9

Excel Programming with VBA Starter

Methods are named using verbs while properties are named using nouns. Methods represent
procedures, that is, actions to be performed or functions. Therefore, the Activate method is
a procedure that activates the object Range, which has been specified in the code. Similarly,
properties refer to the qualities of the object. For example, the Name property can be used to
retrieve the name of a worksheet as well as to rename it. Properties can be read-only,
write-only, or read-write.

If you find that confusing, you can think of it in terms of your own body. For example, Height
is a property that tells how tall you are, whereas Grow is a method (think of this method as a
growth hormone) that instructs your body to grow.

Finally, you can search for properties and methods while in this window. Simply enter what
you are looking for in the box right under the Excel box, as shown in the following screenshot.
The Object Browser will show you all the matching results with the corresponding class and
its membership:

Working with variables
One important aspect of VBA programming lies in declaring your variables. Variables, as the
name suggests, are things that vary or change over a period of time. Therefore, a variable could
be specific such as a text string, a number (such as integer and long), or an object. But it can
also be a variant, which means it takes no specific shape to begin with, but it will take whatever
shape it is set to later on in your code.

It is not a prerequisite that you declare your variables (unless the container has the key phrase
Option Explicit placed on the first line of the code window). In this scenario we have what
we call implicit declaration, that is, you don't declare any variables and let VBA automatically
create a variant type whenever a variable is needed.

Forcing explicit variable declaration is a good practice as it improves code performance, it makes
reading your code easier (for others and yourself), and it also avoids ambiguity in your code. If
you want the compiler to force variable declarations, follow these steps to switch on explicit
variable declaration:

1.	 Open the Visual Basic Editor.

www.it-ebooks.info

http://www.it-ebooks.info/

10

Excel Programming with VBA Starter

2.	 Go to Tools | Options.

3.	 When the Options dialog box open, activate the Editor tab (if it is not active), and
check the Require Variable Declaration option.

Variables can be declared as:

ÊÊ Private: A private variable implies that it can only be accessed by its container object.
In other words, if a variable is declared as private inside a module, it is only accessible by
the module that contains it. By default, declarations inside built-in objects (user forms,
ThisWorkbook, worksheets, and classes) are private. Declaring a variable as public
within such objects only changes the scope at the object level, not at the project level.

ÊÊ Public: A public variable implies that any object within your project can access it,
as long as it is declared in a standard module. Public variables must be placed inside
standard modules if you want their scope to be global (project level).

The preceding declarations relate to accessibility of the variables you declare. However, there
are other keywords you can use in the declaration:

ÊÊ Dim: This stands for Dimension and is the most common way to declare a variable

ÊÊ Static: This determines that the variable must remain static throughout the execution
of your code

ÊÊ Const: This determines that the variable must remain constant throughout the
execution of your code

The following code snippet illustrates the usage of such declarations and combinations.
Explanations are embedded in the code:

'Variable which is only accessible within this module
Private myInteger As Integer

'Variable accessible from anywhere within this VBA Project
Public myExcelRange As Excel.Range

'Constant accessible from anywhere within this VBA Project
Public Const myString As String = "This text will not change."

'Declaring variables within a producedure
Sub DeclaringVariables()
' Static variable will retain its previously
' assigned value across the same session
 Static MyStaticCounter As Long

' Early binding of an object
 Dim myAppExcel As Excel.Application
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

11

Excel Programming with VBA Starter

The Immediate window
The Immediate window allows you to display information related to the debugging of your
code. Debugging refers to the process of finding and mitigating "bugs". Bugs are coding
mistakes that cause your program to deviate from its original intended use. The Immediate
window will also execute commands that you type directly into it. It appears, by default, at the
bottom of Visual Basic Editor (VBE) window:

To display the Immediate window (if it is not active), follow these steps:

1.	 Go to View | Immediate window.

2.	 Alternatively, press Ctrl + G simultaneously (press F7 to jump back to the code window).

The Immediate window has many uses, some of which we will look at now. To demonstrate
the possibilities, ensure that the Immediate window is active and replicate the following code
snippets in a standard module; then, execute it:

ÊÊ Debugging problems in your code: This first method uses debug.print and it is great if
you need to find out what is going on in your code. A code sample as follows. Copy it
into a standard module and execute it.

Sub ErrorCode()
 On Error Resume Next
 MyRandomNumber = Rnd() / 0
 Debug.Print Err.Description
End Sub

In this example, we instruct VBA to resume the next line of code if it finds an error. As
division by zero is not defined, an error will occur. Then, we use the Print method of
the Debug object to write the description of the error to the Immediate window.

www.it-ebooks.info

http://www.it-ebooks.info/

12

Excel Programming with VBA Starter

ÊÊ Calling a procedure or function: Using the same example code just used, on the
Immediate window, write the following and then press Enter:

Call ErrorCode()

This will force the execution of the procedure entitled ErrorCode(). As the procedure
generates an error, the error description will also be written to the Immediate window.

If you are calling a function, however, you will need to do something slightly different.
As an example, copy the following function into a standard module:

Function MyNameIs() As String
 MyNameIs = "Robert Friedrick Martin"
End Function

The function simply returns my name. It has no other use, but supposing this was an
internal function and you wanted to know my name, you could call this function from
the Immediate window as follows:

?MyNameIs

Upon execution, the output will be shown in the Immediate window, as shown in the
following screenshot (previous example included):

ÊÊ Executing the code: You can run code straight from the Immediate window. Let us take
the first example given in this section. Let us suppose we want to check what happens
to the division before putting that line of code in your procedure. We can run the
following in the Immediate window (press Enter after entering the procedure):

MyRandomNumber = Rnd() / 0

And that's it
In this section, you have learned some basic stuff about VBA. These included macro recording,
adding modules, and browsing objects.

You also learned how to use the immediate window to debug your code. This feature is very
important because it allows you to carry out many critical debugging tests.

With these tools mastered, you are now able to move on to the next step of your VBA quest.

www.it-ebooks.info

http://www.it-ebooks.info/

13

Excel Programming with VBA Starter

Quick start – VBA programming
Now that you have the basic understanding about VBA (recording a macro, adding modules,
browsing objects, and declaring variables), it is time to get to work.

In this section you will learn how to:

ÊÊ Use loops

ÊÊ Dimension and instantiate objects

ÊÊ Create sub routines and user-defined functions

Working with loops
You will start your programming trip down the VBA lane by learning a bit about loops. Loops
allow you to repeat a set of instuctions until a predetermined condition changes or a criterion
is met.

Loops are extremely important, so you should study and practice this section carefully. You will
now be introduced to different looping methods. We will start with For-Next loops.

Method 1 – For-Next loops
If you need to count something or you need to loop through a series of predetermined elements
within a given set, then you should look no further. This is because once you specify the start and
end values and the loop takes place, the counter starts to run. Suppose that the start value is 1
and the end value is 10 (all values being integers). Then, assuming the loop goes from beginning
to end, the counter value will be 11 when the loop finishes to run its course. This is so because
the counter is inclusive, that is, it must include the last value when the loop was called. On the
other hand, suppose the loop exits at the Exit For statement; then the counter value will
depend on the condition that forced the exit. Suppose the condition states that if the counter is
equal to 5, then it must exit. The counter value at the exit point will equal to 5. However, if the
set condition is greater than 5 at the first value greater than 5, the loop will exit. This value will
be 6 (assuming we are dealing with integers). The basic syntax for this loop type is as follows:

For counter = start To end [Step step]
 [statements]
[Exit For]
 [statements]
Next [counter]

In the Next [counter] part, there is no need to specify the [counter] label. In spite of this,
whether you happen to have many nested loops (loops inside loops) or not, it is a good idea to
explicitly specify which counter you refer to. This is so because it is quite easy to get confused as
the code grows in complexity.

www.it-ebooks.info

http://www.it-ebooks.info/

14

Excel Programming with VBA Starter

It may sound redundant, but the variable can increase or decrease in value each time it moves to
the next value.

Here's a simple example:

Sub ForNextLoopExample()
' Dimensions (Declares) the "i" variable as an
' integer type
 Dim i As Integer

' Dimensions (Declares) the "iCount" variable as an
' integer type
 Dim iCount As Integer

' Loop from "i" equals 1 until
' it reaches the value equal to 100:
 For i = 1 To 100
' Add 1 to the counter value.
' In order to keep the addition going
' iCount is added to itself plus 1:
 iCount = iCount + 1
' Move to the next "i" variable in the loop
' Keep doing this until it reaches the value 100
 Next i

' Display the counter in a message box
 MsgBox iCount
End Sub

Here, the loop runs from the integer 1 to 100 and adds 1 to the counter variable each time the
loop moves to the next value. You should notice that the variable iCount is not needed. Thus,
your code could look as follows (it will be 1 larger than the previous code as it goes from 1 to 100
inclusive):

Sub ForNextLoopExample2()
' Dimensions the "i" variable as an
' integer type
 Dim i As Integer

' Loop from "i" equals 1 until
' it reaches the value equal to 100
 For i = 1 To 100
 Next i

' Display the "i" variable in a message box
 MsgBox i
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

15

Excel Programming with VBA Starter

By pressing F8 successively you will be able to more clearly see how
the code actually works. As you move through the code, stop, and
point the mouse pointer to the variable so that you can inspect its
value at that given point.

You can obtain the exact same effect as the preceding loop as follows:

Sub SteppedLoopExample()
 Dim i As Double
 Dim iCounter As Integer

' Loop from 0 to 1 with a step
' equivalent to one-hundredth of 1 (0.01)
 For i = 0 To 1 Step 0.01
 iCounter = iCounter + 1
 Next i
 MsgBox iCounter
End Sub

What was done in the preceding code is similar to dividing one pound into 100 pence (or £ 0.01).
Therefore, between 0 and 1 there are a hundred units, which is the same as counting from 1 to
100, as we did in the first loop.

One detail here is that the data type had to be changed from Integer to Double for the i
variable. This change is necessary because the step is not an integer. If we leave the i variable
as an integer, we will get an infinite loop, as the loop will never manage to move from 0 (zero)
to the next step, as 0.01 will be taken to be 0 (zero).

Method 2 – For Each-Next Loops
This kind of loop will repeat a block of statements for each object in a collection or each
element in an array. For example, you could loop through each Worksheet (object) in the
Sheets (collection).Given that you will move through a series of objects in a collection,
VBA will automatically set the variable each time the loop runs.

The syntax for this loop type is as follows:

For Each element In group
 [statements]
[Exit For]
 [statements]
Next [element]

The next sample code reads through each file in the folder where the workbook is located. It
then lists each file in the active worksheet.

www.it-ebooks.info

http://www.it-ebooks.info/

16

Excel Programming with VBA Starter

For this example, you will be introduced to an interesting programming concept – referencing.
In VBA we can reference external libraries so that we can benefit from their Object Model (OM).
The OM, in this context, refers to the collection of objects that belong to such a library. Does
that sound confusing? Then imagine a real library with a collection of books (objects). There are
thousands of libraries across the world and if you become a member, you will have access to
their collections of books. In the same fashion, if you reference the Microsoft Outlook Object
Library, you will have access to all its objects.

Here, we have to add a reference to the Windows Script Hosting Model. In order to do so, you
must follow these steps:

1.	 Open the Visual Basic Editor (VBE) window.

2.	 Go to Tools | References.

3.	 Once the dialog box is open, scroll down until you find the Windows Script Hosting
Model. Once you find it, select it and close the dialog box.

Sub ListFilesInThisFolder()
' Dimensions the File System object
 Dim oFSO As New FileSystemObject

' Dimensions the Folder object
 Dim oFSOFolder As Folder

' Dimensions the File object
 Dim oFSOFile As File

' Dimensions the row counter and
' the string the will hold the path
' for this workbook
 Dim lRowCount As Long
 Dim sFilePath As String

' Sets the file path for this workbook
 sFilePath = ThisWorkbook.Path

' Sets the folder, based on where this workbook
' is located, in order to pick the files containing
' in it.
 Set oFSOFolder = oFSO.GetFolder(sFilePath)

' Sets the lower bound for the row counter
 lRowCount = 1

' For each file in the folder

www.it-ebooks.info

http://www.it-ebooks.info/

17

Excel Programming with VBA Starter

 For Each oFSOFile In oFSOFolder.Files
' Get the file name and write it to the ActiveSheet
' in the cell whose row number is equal to lRowCount
' and column is equal to 1
 ActiveSheet.Cells(lRowCount, 1) = oFSOFile.Name

' Add 1 to the row counter
 lRowCount = lRowCount + 1

' Move to the next file found in the folder
 Next oFSOFile

' Clean the objects from memory
 Set oFSOFile = Nothing
 Set oFSOFolder = Nothing
 Set oFSO = Nothing
End Sub

Method 3 – Do-While and Do-Until loops
These two loop types will run while a condition is true or until the condition becomes true.
 The syntax for these two types of loops is as follows:

Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]
Loop

In the preceding example, the condition was specified before entering the loop. However,
these two methods also give the flexibility to determine the condition after the loop has
started. For example:

Do
[statements]
[Exit Do]
[statements]
Loop [{While | Until} condition]

Unlike the For-Next loop mentioned in the previous section that executes until it reaches
the last "next number" or object in the sequence, a Do While or Do Until must reach a true
condition before it stops looping. This can obviously result in an infinite loop if a true value
cannot be attained.

www.it-ebooks.info

http://www.it-ebooks.info/

18

Excel Programming with VBA Starter

So, let us suppose you have a series of values in the first column of the active worksheet and you
need to determine the address of the last empty cell. You could do so using the following code:

Sub DoUntilLoop()
' Dimensions the row counter
 Dim lRowCounter As Long

' Sets the lower bound of the row counter
 lRowCounter = 1

' Run the loop until it finds the first empty cell
' in the first column of the active sheet
 Do Until IsEmpty(ActiveSheet.Cells(lRowCounter, 1))
 lRowCounter = lRowCounter + 1
 Loop

' When the first empty cell in column 1 is found,
' display its address in a message box
 MsgBox ActiveSheet.Cells(lRowCounter, 1).Address
End Sub

Bear in mind that this code will return the first empty cell (see the following screenshot):

It does not mean that below this particular cell there is nothing else. If you really needed to
determine the last cell with data, a better option would be as follows:

Sub GetLastRowAddress()
' Display the address of the last non-empty row
' in a message box. This is equivalente to pressing
' CTRL + Up Arrow
 MsgBox ActiveSheet.Range("A1048000").End(xlUp).Address
End Sub

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com . If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

19

Excel Programming with VBA Starter

The following example will be executed while the random number is smaller than 80. Once the
condition is true, the loop exits and displays a message telling us the number found and how
many times the loop was executed before exiting.

Sub DoWhileLoop()
 Dim iMyRandomInteger As Integer
 Dim lLoopCounter As Long

' Randomize so that a new seed value is set;
' for the Rnd() function
 Randomize
 iMyRandomInteger = Int((100 * Rnd) + 1)

' Do the loop while the random number is
' not greater than 80
 Do While (Not (iMyRandomInteger > 80))
 iMyRandomInteger = Int((100 * Rnd) + 1)
 lLoopCounter = lLoopCounter + 1
 Loop

' Display a message box showing the random value that
' caused the loop to exit. It also shows the number of
' times that the loop ocurred before it exited.
 MsgBox "Loop exited... The exit value is equal to: " & _
 iMyRandomInteger & ". Loop was executed " & _
 lLoopCounter & " times before exiting.", vbInformation

End Sub

It is important to emphasize that if we omit the Randomize statement,
the Rnd function will use the same number as a seed whenever it is called
for the first time. This will give the impression that you are not getting a
random number, which will be true if you are using the first number, and
thereafter uses the last generated number as a seed value.

The While loop type can also end with the keyword Wend:

While
 [statements]
Wend

This loop construct does exactly the same thing as the previous example. The usage depends on
the programmer and his/her preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

20

Excel Programming with VBA Starter

Dimensioning and instantiating objects
You already know how to dimension a variable. You basically add the keyword Dim before
your variable and then define its type. When you studied the second looping method you were
introduced to referencing libraries. However, nothing was said about the object used, to be
exact, the FileSystemObject.

When we work with objects we can dimension them explicitly or implicitly by using either the
true object or by using the generic class, namely, Object.

Here's how it looks explicitly:

Sub DimensioningAnObject()
 Dim objFSO As FileSystemObject
End Sub

And generically, it will look like this:

Sub DimensioningAnObject()
 Dim objFSO As Object
End Sub

It should be clear from the preceding code that the first method is preferred to the second,
given that anyone reading your code would immediately identify what the object (objFSO) is.
Notice that in the second example the object can be set to be any kind of object even though its
dimension name may suggest something else. Therefore, you could set it to be the application
object, if that was your desire.

However, it is important to point out that you can only dimension an object in this way (first
example, just covered) if it belongs to the project. Objects that belong to the Excel application will
always be available though. Other objects, such as FileSystemObject, must be referenced.

Whether you reference an object or you are using the default objects belonging to the
application, this is known as early binding, that is, you bind (expose) the objects to the VBA
project from the outset.

Therefore, EarlyBinding could look as follows (the explanation is embedded in the
following code):

Sub EarlyBinding()
' Dimension the object explicitly
 Dim objAppExcel As Excel.Application

' On error the code should resume the next line
' This is because we are trying to "get" the
' Excel Application Object, but it does not exist
' an error will be thrown
 On Error Resume Next

www.it-ebooks.info

http://www.it-ebooks.info/

21

Excel Programming with VBA Starter

 Set objAppExcel = GetObject(, "Excel.Application")

' If the objAppExcel is still nothing (it was not set
' in the previous line), then the object should be created
 If objAppExcel Is Nothing Then _
 Set objAppExcel = CreateObject("Excel.Application")

' Show the caption of window 1
 MsgBox objAppExcel.Windows(1).Caption

' Destroys the object
 Set objAppExcel = Nothing
End Sub

Now, let us suppose you are developing a VBA application that will work with different versions
of Excel. In this case, a late binding is more appropriate. Why? Because the generic object can
take any shape and form. Therefore, it will not matter whether you are working with Excel 97,
Excel 2010, or future releases. In fact, it does not matter for any object type, as Object is just
an abstraction.

To make matters clearer, try to describe a bird. Most people would describe a feathery animal
that sings and flies. However, a bird is an abstraction because not all birds sing or fly. Until you
get down to the specifics, that is, set (define) which bird you are talking about, it could be a
prehistoric bird for all anyone knows.

This is why late binding is great, as you do not need to specify what it is until it is really necessary.

The following example shows how late binding could be attained:

Sub LateBinding()
' Dimension the object implicitly
 Dim objAppExcel As Object

' On error the code should resume the next line
' This is because we are trying to "get" the
' Excel Application Object, but it does not exist
' an error will be thrown
 On Error Resume Next
 Set objAppExcel = GetObject(, "Excel.Application")

' If the objAppExcel is still nothing (it was not set
' in the previous line), then the object should be created
 If objAppExcel Is Nothing Then _
 Set objAppExcel = CreateObject("Excel.Application")

' Show the caption of window 1

www.it-ebooks.info

http://www.it-ebooks.info/

22

Excel Programming with VBA Starter

 MsgBox objAppExcel.Windows(1).Caption

' Destroys the object
 Set objAppExcel = NothingEnd Sub

The code is basically the same presented previously, but the Excel application object is defined
from the outset.

Another important point you should know about working with objects is that they need to be
set. In the previous examples this is done at the following line of code:

 Set objAppExcel = GetObject(, "Excel.Application")

However, if you are using early binding, you can also set the object at the same time you
dimension it:

 Dim objAppExcel As New Excel.Application

Notice the keyword New just before the object. When an object is created like this, there is no
need for you to set it.

When you set an object using the preceding method, memory is
allocated to handle calls to its library. In the preceding example, the Excel
application starts to run in the background. You can view this by accessing
the Task Manager. You can open the Task Manager by pressing the keys
Ctrl + Shift + Esc simultaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

23

Excel Programming with VBA Starter

Subroutines and user-defined functions
In the previous topics, you were indirectly introduced to subroutines, but you were not taught
their true meaning and function.

In this topic you will learn a bit about subroutines and user-defined functions specifically.

Subroutines
Routines, also known as procedures, are defined as a set of logical instructions (methods) that
are used to regulate an activity or how something should behave.

For example, you could create a procedure (routine) that instructs the Excel application to add a
new workbook to its workbook collection or add a new worksheet to an existing workbook in the
worksheet collection.

Collections are written in the plural. Thus, the Workbooks collection
represents a collection of Workbook objects. By analogy, the Worksheets
collection represents a collection of Worksheet objects.

The following code snippet instructs Excel to add a new worksheet to the active workbook:

Sub AddWorksheet()
 Application.ActiveWorkbook.Sheets.Add Before:=Worksheets(1)
End Sub

Add is called a method and it will always be a verb. In the preceding instruction, the method
can take arguments that determine how the instruction should take place. In this case, the new
worksheet should be added before the first worksheet in the workbook.

If for any reason you need to abandon the instruction, you can use the Exit Sub statement:

Sub AddWorksheet()
 Exit Sub
 Application.ActiveWorkbook.Sheets.Add Before:=Worksheets(1)
End Sub

In the preceding example, the subroutine is exited before any worksheet is added to the
workbook. Notice that here the worksheet index 1 was explicitly defined in the code.
However, it is never a good idea to hardcode things into your procedures.

A better option is to pass such values as arguments of the procedure. Arguments can be optional
or not. So, let us adapt the previous example so that we have two scenarios:

ÊÊ A required argument

ÊÊ An optional argument

www.it-ebooks.info

http://www.it-ebooks.info/

24

Excel Programming with VBA Starter

The following screenshot shows what goes on in the code window:

The original subroutine now has an argument called SheetIndex whose value must be an
integer. If the argument is anything other than an integer or is missing, VBA will throw an error.
The argument of our procedure is then used as argument of the Worksheets collection.

We also need a secondary procedure from where we call the main procedure.

In order to avoid an error, we can make the argument optional. This is done as follows:

Sub CallAddWorksheet()
 Call AddWorksheet
End Sub

Sub AddWorksheet(Optional SheetIndex As Variant)
 If IsMissing(SheetIndex) Then SheetIndex = 1
 Application.ActiveWorkbook.Sheets.Add _
 Before:=Worksheets(SheetIndex)
End Sub

The first thing you will notice is that the Integer data type is not used. Instead, Variant was.
The reason for this is that Variant is the only data type that can be missing. If Integer had
been used, then the first value in the series would be returned, that is, a missing argument would
actually be 0 (zero).

Functions
Functions, as the name suggests, return values. This contrasts to a subroutine, which is an
instruction to perform an action.

Just like a subroutine, a function is also a method and it serves to supplement any missing
function in Excel. Again, just like a subroutine, it may or may not have an argument. In the
case it has an argument, it can also be optional.

Consider the following example:

Function CountWords(ByVal Text As String) As Long
 CountWords = UBound(Split(Text, " ")) + 1
End Function

www.it-ebooks.info

http://www.it-ebooks.info/

25

Excel Programming with VBA Starter

Similar to the procedure example, here the text separator (which is an empty space given as "
") has been hardcoded into the function. In this scenario, it may not make a difference given that
we are counting words and the space will be the delimiter between words. However, you can use
the same method used in the procedure to pass the delimiter as an argument.

The trick in this UDF is to use the internal function named Split to split the input text into an
array of words. Then, using the UBound (upper bound) function, we count the upper limit of this
array. We add one to the value returned by the function; otherwise the result will be less by one
word, given the lower bound of arrays.

If your function is placed in a standard module, then it will be available in your worksheet as
well. When you start typing the name of functions that start with the same letters, you will be
presented with a list of options as shown in the following screenshot:

If you are not presented with the preceding screenshot, it means that
Formula AutoComplete is not selected. In order to activate this option,
you must go to File | Excel Options | Formulas. Then, under the Working
with formulas group (second group from top), select the Formula
AutoComplete option.

Functions are very versatile, which means you can use the function to calculate values in forms,
worksheets, or call them from another procedure within the VBA project. Furthermore, you
also call the function from another function whose final value depends on an intermediate
calculation or that performed by this particular function.

In this way, you can compartmentalize the job performed by each function you create, instead of
packing all calculations with a single function.

If you plan to use your custom functions in a worksheet, then the next important step is related
to categorizing your function. If you open Excel's Insert Function dialog box (you can click on fx
on the Formula bar or press Alt + I + F) you will see that all functions go into a specific category.
In fact, even our custom function goes into a category (the User Defined category).

www.it-ebooks.info

http://www.it-ebooks.info/

26

Excel Programming with VBA Starter

However, you may want to give more meaning to your function by placing it into a
"proper" category.

The following table shows the list of all the categories of Excel's built-in functions:

Integer value Category name

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands (hidden)

11 Customizing (hidden)

12 Macro (hidden)

13 DDE/External (hidden)

14 User-Defined (default for custom functions)

15 Engineering

www.it-ebooks.info

http://www.it-ebooks.info/

27

Excel Programming with VBA Starter

Given that the function presented here deals with text, you may want to put it in the Text
category. We will take the opportunity to add a description to it as well.

The code will run when the workbook is opened. Therefore, we will add the code to the Open
event of the workbook. In order to do so, you must open the code window for ThisWorkbook.
With the code window open, we will insert the following procedure:

Private Sub Workbook_Open()
 Application.MacroOptions "CountWords", _
 "This function counts the number of words in a text.", , , , ,
7
End Sub

After executing the preceding code, the function will be categorized as Text and the description
will be added to it. The following screenshot shows the result:

Prior to Excel 2010, we could not add description to the arguments of our functions. This has
changed, which makes UDFs look much more professional than before.

Basically, we will use the same code as before, but we will add a list of arguments and the
respective descriptions. It is done as follows:

Private Sub Workbook_Open()
' Declare a string array with two positions
 Dim CountWordsArgs(1 To 2) As String

' Define the value for each position within the array

www.it-ebooks.info

http://www.it-ebooks.info/

28

Excel Programming with VBA Starter

 CountWordsArgs(1) = "Type in or select the text containing " & _
 "the words you want to count..."
 CountWordsArgs(2) = "Type in the delimiter used to separate " & _
 "and count the words..."

' Set the MacroOptions value
 Application.MacroOptions _
 macro:="CountWords", _
 Description:="This function counts the number of " & _
 "words in a text.", _
 Category:=7, _
 ArgumentDescriptions:=CountWordsArgs

End Sub

The following screenshot shows the Function Arguments dialog box with the respective
arguments and their descriptions:

Now, let us suppose you want to have your own category, that is, instead of using any of the
built-in function categories (including the User Defined category), you wish to have something
like "PACKT Functions".

www.it-ebooks.info

http://www.it-ebooks.info/

29

Excel Programming with VBA Starter

The following screenshot shows exactly this scenario. This is a great way to take your
personalization to the next level.

This is done as follows:

1.	 Right-click on any sheet and then click on Insert….

2.	 On the dialog box that opens, select MS Excel 4.0 Macro.

3.	 Next, activate the Formulas tab and the click on Define Name.

4.	 In the New Name dialog box, enter a name for your first function. In this case, I will
name DummyFunction.

5.	 Now, select Function from the Macro group. In the category drop-down list, enter
whatever name you've decided to give to your custom category (here, I chose PACKT
as the prefix, but it could be your company name, for example).

www.it-ebooks.info

http://www.it-ebooks.info/

30

Excel Programming with VBA Starter

That's it, you are done. In order for you to add your custom functions to this new category, you
will need to know which index represents it. Given the built-in categories, this number should
start at 16. So, you should try indexes starting at 16.

In this section, you have learned some more advanced programming techniques in VBA. You
started with looping techniques where you learned different ways to loop through different
types of variables such as numeric variables and objects. You also learned the importance of
clearing objects from memory in order to avoid the unnecessary allocation of memory to objects
which no longer need such resources. Finally, you learned how to create user-defined functions
and how to set their attributes. In the next section, you will learn more specialized features such
as enumeration and classes.

www.it-ebooks.info

http://www.it-ebooks.info/

31

Excel Programming with VBA Starter

Top features you'll want to know about
In this section, you will learn about some VBA programming features that you will certainly want to
know about. Here, you will learn how to work with enumeration, classes, and external libraries.

We will kick off by looking at enumeration.

Enumeration
The first question that might pop into your mind is, "What the heck is enumeration?" As the
name suggests, it enumerates something, but what? As a rule of thumb, enumeration is a group
of constants. So, supposing you have an object, it is likely that this object has a color property.
Therefore, you could have a "Color" group. Then you could enumerate the colors you want to
use in your code. This will make life easier when determining which color to use, given that you
simply declare the enumerator and choose one of its values when the times comes.

Take a look at the following screenshot:

Here, we have a FileDialog property (which is a member of the Application
class) that takes FileDialogType as an argument, which is in turn enumerated by
msoFileDialogType. Therefore, when you try to enter an argument for this property,
you are only allowed to choose from those types which have been enumerated, that is,
the options that belong to the group of file dialog types.

This is a great way to reduce your workload when you need to use certain types of constants, given
that you can use enumeration across your entire VBA project. Furthermore, if you make a mistake
in the value of such constants, you do not need to run through your code in order to change the
variable wherever it had been used. Instead, you simply change the enumeration value.

Enumerations, such as procedures and functions, can be declared as Public or Private. The
scope will depend on its intended use. If you plan to use it across your VBA project, ensure you
place it in a standard module.

An enumeration is declared as follows:

Public | Private Enum MyEnumerationName
 [Constants]
End Enum

www.it-ebooks.info

http://www.it-ebooks.info/

32

Excel Programming with VBA Starter

Now, let us suppose we want to enumerate some colors to be used in our code, an example
could be as follows:

Public Enum MyColors
 COLOR_BLACK = 0
 COLOR_BLUE = 12611584
 COLOR_GREEN = 5287936
 COLOR_ORANGE = 49407
 COLOR_RED = 255
 COLOR_YELLOW = 65535
End Enum

If you need the value for other colors (or any other constant for that
matter), simply record a macro painting the background of a cell, object,
and so on. Then, inspect your code and copy the parameters from there.

The next step, of course, is to put it to good use. A screenshot of the code, when calling a
subroutine that takes the custom enumeration as argument, is as follows:

The preceding code is shown as a screenshot so that you can have a clearer idea of what
happens when you call the enumeration. As explained before, you can pass a parameter to
a procedure and you can also declare its type. In this example we do just that. We declare a
parameter called Color that is declared as the MyColors enumeration.

When we call the procedure, we are forced to enter such a parameter and we are only given the
options declared in our enumeration.

Classes
You will now learn a bit about classes. When we program, we are continuously manipulating
objects. You have seen this already in this book and it is now time to create your own objects.

www.it-ebooks.info

http://www.it-ebooks.info/

33

Excel Programming with VBA Starter

Bear in mind that VBA is not a truly object-oriented programming language. However, it gives
us a whole lot of possibilities in terms of programming, as we can compartmentalize many
tasks by encapsulating the code into such classes. We can then call such encapsulated code
when necessary.

VBA provides you with icons that visually identify the types you use. The following screenshot
shows a Worksheet object type:

An object can be easily recognized by its icon. As mentioned at the beginning of this book,
objects have properties and methods, which in turn are represented by their own set of icons.

When we explicitly dimension an object, all of its methods and properties are exposed. We get to
them by adding a dot after the object's name. This is demonstrated in the following screenshot:

A class is simply an abstraction, but what is an abstraction? Abstraction is something that is
outside of the concrete realm. In other words, an abstraction is something that has a high level
of generalization.

If this sounds strange, picture a tree in your mind. What do you see? A tree is an object with a
high level of generalization (abstraction) because we cannot determine what kind of tree it is
until we specify its properties such as name, type, and order.

In fact, although most people would think of a tree as a woody plant, the oil industry has
something called "Christmas tree", which is neither an artificial Christmas tree that we put
up for Christmas nor a woody plant.

www.it-ebooks.info

http://www.it-ebooks.info/

34

Excel Programming with VBA Starter

A graphical representation of this idea is shown in the following diagram:

So, this is what a class is – a highly generalized object.

Another aspect of classes is that you can group such objects into collections. Collections will
always be defined as plurals of such objects. So, taking the tree object as an example, we can
build collections of the same type, as shown in the following diagram:

To begin with, we will insert a new class module. In order to do so, open the Visual Basic Editor
(VBE) by pressing Alt + F11 simultaneously. Then, go to Insert | Class Module.

www.it-ebooks.info

http://www.it-ebooks.info/

35

Excel Programming with VBA Starter

Once you have inserted the class module, rename it to clsHouse, as shown in the following
screenshot:

The prefix cls indicates that this is a class module. We will call it this way so that we can pretend
that this is a generalization of a house, that is, this "house" could be a shack or a mansion for all
we care.

We will now code this object and give it some properties and methods. Keep in mind the
nomenclature, as for properties we use nouns and for methods we use verbs.

Here is a quick example with explanations:

Dim sHouseAddress As String

'The keyword "Let" of a property permits us to
'set a value for a property (write to the property)
' Here, the property is called "Address" which
'allows us to give an address to the house.
Property Let Address(ByVal HouseAddress As String)
 sHouseAddress = HouseAddress
End Property

'The keyword "Get" allows us to retrieve the
'value written to the property
Property Get Address()
 Address = sHouseAddress
End Property

In this class, we have one property called Address. This is a read-write property, as we can read
from and write to it. The keyword that allows us to write to a property is Let. Conversely, to read
a property we use the Get keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

36

Excel Programming with VBA Starter

The next step is to instantiate the object so that we can use it. In order to carry this out, we must
add a standard module. Once this is done, we will add the following code (shown as a screenshot
so that you get a better idea of what to expect):

Notice that the MyHouse object is dimensioned as a new instance of clsHouse. For now, it only
has one property (Address) and its value will be 2 Skinner Street, London.

Once you set the address value, you can retrieve it and show it in a message box, as follows:

Sub BuildingMyHouse()
 Dim MyHouse As New clsHouse

 MyHouse.Address = "2 Skinner Street, London"
 MsgBox "My house is located at : " & MyHouse.Address
 Set MyHouse = Nothing

End Sub

Now, let us suppose we want to retrieve the size of this particular house. Let us further suppose
that this is a fixed size, that is, we cannot change (write) this value; we can only retrieve (read) it.

We can add the following property to our class. This property is read-only, as its value is
hardcoded as "112 square meters":

Property Get Size() As String
 Size = "112 square meters"
End Property

We can readapt our standard module code so it would look as follows. Notice that this time the
message to be shown also contains the size of the house:

Sub BuildingMyHouse()
 Dim MyHouse As New clsHouse
 Dim sMsg As String

 MyHouse.Address = "2 Skinner Street, London"
 sMsg = "My house is located at : " & MyHouse.Address & vbCr
 sMsg = sMsg & "Its size is : " & MyHouse.Size
 MsgBox sMsg

 Set MyHouse = Nothing

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

37

Excel Programming with VBA Starter

Once it is executed, you will get the following message box, which contains both the house's
address as well as its size in square meters:

Although the property Size, just specified is read-only, we can create a method that instructs
this size to grow. Of course, this requires a redefinition of our code.

We will make the assumption that the fixed size for any house we build is always 112 square
meters. We can later add extensions to the house (make the house "grow") and that the growth
(extension) must be an integer representing 1 meter at a time. So, if we instruct the size to grow
(extend the size of the house) by 2, it means the size will be 2 square meters larger than the
default size.

The new code in the class module could look as follows:

' Sets a global constant whose default value is 112
Const DefaultSize As Integer = 112

' Global variable to hold the address defined by the user
Dim sHouseAddress As String

'Global variable to hold the variable containing
'the size by which the house should grow
Dim iHouseNewSize As Integer

'Method that instructs the house to "grow"
'It takes an argument called "Meters" which is an integer
Sub Grow(ByVal Meters As Integer)
' This integer (Meters) is added to the default size
' of the house. The global house size (iHouseNewSize) is
' then set.
 iHouseNewSize = DefaultSize + Meters
End Sub

'Property to return the house size
Property Get Size() As String
' If the new size of the house is zero (the default
' value of an integer type) then, the size of the house

www.it-ebooks.info

http://www.it-ebooks.info/

38

Excel Programming with VBA Starter

' is the default value (112 square meters)
 If iHouseNewSize = 0 Then
 Size = DefaultSize & " square meters"

' Otherwise, it should be the new value
 Else
 Size = iHouseNewSize & " square meters"
 End If
End Property

We then need to change the code in the standard module. Here, we will have two different
moments of the code. First, it will show the default value for the house. We will then instruct
it to grow by 5 square meters and show its new size:

Sub BuildingMyHouse()
' Dimension the MyHouse object
 Dim MyHouse As New clsHouse

' String to hold the message that will be
' displayed in the message box
 Dim sMsg As String

' Set the property "Address" of the MyHouse Object
 MyHouse.Address = "2 Skinner Street, London"

' Defines the message to display the address
 sMsg = "My house is located at : " & MyHouse.Address & vbCr

' Shows the current size of the MyHouse object
 sMsg = sMsg & "Its size is : " & MyHouse.Size

' Display the address and current size of the MyHouse object
 MsgBox sMsg

' Increase the MyHouse object size by 5 square meters
 MyHouse.Grow (5)

' Set a new message with the new values
 MyHouse.Address = "2 Skinner Street, London"
 sMsg = "My house is located at : " & MyHouse.Address & vbCr
 sMsg = sMsg & "Its new size is : " & MyHouse.Size

' Show the new values
 MsgBox sMsg

 Set MyHouse = Nothing

End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

39

Excel Programming with VBA Starter

Another good use for classes is encapsulation. Basically, what it means is to envelope complex
code in a class module and then to expose only the easy part, either through a method or a
property. Think of encapsulating and putting that awful-tasting medicine in a capsule with a
mint taste. The awful medicine (the code) stays inside the capsule (class module), but you only
see and taste what is outside, yet it works wonders all the same.

The next example will return the name of the user currently logged in the machine. In order to
do this, we will need to use a Windows API. There is a little application called API Viewer (refer to
the Resources section to find out where you can download this viewer from). API Viewer exposes
Windows APIs, which you can copy and paste into your project.

For this particular example, we will use the GetUserName API. So, to begin we will add a
new class module, but this time we will name it clsComputer, given that we will work with
functions that work together with the operating system.

Here is the API you must add to the top-most part of your class module. There is not much
to say about the API, so the explanation will be added to the code we will write on top of it:

Private Declare Function GetUserName Lib "advapi32.dll" _
 Alias "GetUserNameA" (_
 ByVal lpBuffer As String, _
 ByRef nSize As Long) As Long

This examples assumes a 32-bit version of the API being used.

The next job is to create a method (in this case, it will be a function) that will translate the API
into a value returned by our custom function. (The method that will return the username. We
will declare it as Private, so that it is not visible outside the class module):

'This is a private function to return the username
'This function is a method that belongs to this
'class module and will be user with a read-only property
Private Function ShowUserName() As String
' This string will work as a buffer for the username
 Dim UserName As String

' Number of characters where the value returned
' within the buffer will be cut off. This is done
' using the Mid() function below
 Dim N As Integer

' Sets the value of the username variable as a
' string containing 255 blank characters
 Username = String(255, " ")

www.it-ebooks.info

http://www.it-ebooks.info/

40

Excel Programming with VBA Starter

' The string (buffer) "UserNamer" gets the characters
' refering to the user's name up to 255 characters
' which is being passed by the GetUserName API function
 GetUserName Username, 255

' Returns the position value of the first non-blank
' character within the string UserName
 N = InStr(1, Username, Chr(0)) - 1

 ShowUserName = Mid(Username, 1, N)
End Function

With the method ready, the next step is to code the property. Basically, the UserName property
gets its value from the preceding ShowUserName function:

Property Get Username() As String
 Username = ShowUserName()
End Property

Finally, in a standard module, we will insert the code that will access this property and return the
currently logged-in user:

Sub ThisComputerSub()
 Dim ThisComputer As New clsComputer
 MsgBox ThisComputer.UserName
End Sub

External libraries
You have already been introduced to referencing a library. Initially, you were introduced to
the Windows Script Host Model. We will now look at other possibilities when it comes to using
external libraries.

Keep in mind that if you plan to have your VBA project used by
others, then their machines must have such libraries registered
too. Otherwise, your code will fail.

In the examples that will follow, you will learn how to integrate your Excel VBA project with
Outlook. Let us start by adding the reference to the Outlook object model:

1.	 Open the Visual Basic Editor (VBE) window (press Alt + F11).

2.	 Go to Tools | References.

3.	 Once the dialog box is open, scroll down until you find the Microsoft Outlook 14.0
Object Library. Once you find it, select it and close the dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

41

Excel Programming with VBA Starter

The version referenced here is for Office 14 (Office 2010). If you
open such a project in an earlier version, say, Office 2007, then
the code will fail given that we have explicitly said to use version
14. Whenever possible, use references to an earlier version.

Now, we are ready to go. Here are the exercises we will perform:

1.	 Create a dialog box so that we can pick one or more files to be attached to an
e-mail object.

2.	 Code a procedure that will create an Outlook e-mail object and attach the files selected.

3.	 Open the e-mail in Outlook so that we can add a message to it before it is sent to
its recipient.

Let us start with the definition of our File Picker dialog box, so you should start by adding a new
standard module. Then, add the following code. The explanation is embedded in the code:

'Public variable that will hold the
'string containing the file names
Public sFileName As String

Sub OpenFileDialogBox()
' Dimension of the file dialog box object
 Dim objFileDialogBox As FileDialog

' Dimension of the file object. It will be
' a variant as we do not know its type
 Dim objFile As Variant

' Set the file dialog box as a File Picker
 Set objFileDialogBox = Application.FileDialog(_
 msoFileDialogFilePicker)

' Set the file name string to zero-length
 sFileName = ""

' With the File Dialog Box we will set
' some of its properties
 With objFileDialogBox
' Caption of the button
 .ButtonName = "Select File"

' Permit multiple selections or not
 .AllowMultiSelect = True

www.it-ebooks.info

http://www.it-ebooks.info/

42

Excel Programming with VBA Starter

' Title of the File Dialog Box
 .Title = "Choose the files you wish to attach to the email"

' Initial view type
 .InitialView = msoFileDialogViewDetails

' Initial file location. The default value will be
' the location of this workbook.
 .InitialFileName = ThisWorkbook.Path

' Open the file dialog box
 .Show

' Loop through the selected files
 For Each objFile In .SelectedItems
' Write the file path and name to the
' file name string
 sFileName = sFileName & objFile & ";"
 Next objFile
 End With

' Remove the last semicolon in the string
 sFileName = Mid(sFileName, 1, Len(sFileName) - 1)
End Sub

The preceding code does not handle the cancellation event. If the user cancels the event, an
error will be thrown. As an exercise, you can cancel the dialog box and see what happens. By
doing so, you expose yourself to issues that will inevitably appear as you start coding in VBA.

With the file dialog out of the way, we can now move on to the e-mail. Once again, the
explanation is embedded in the code:

Sub SendEmailWithAttachments()
' Dimension of the Outlook application and
' the email object item
 Dim objAppOutlook As New Outlook.Application
 Dim objEmail As Outlook.MailItem

' Dimension of the attachment counter, in case more
' than one file is selected
 Dim iAttachmentCounter As Integer

' Variable to split the file attachment string
 Dim varAttachments

www.it-ebooks.info

http://www.it-ebooks.info/

43

Excel Programming with VBA Starter

' Call the procedure to open the File Dialog Box
 Call OpenFileDialogBox

' Create the Outlook email item
 Set objEmail = objAppOutlook.CreateItem(olMailItem)

' With the Outlook email item
 With objEmail

' Split the attachment string so that we can loop
' through the selected items
 varAttachments = Split(sFileName, ";")

' Loop through the array of attachments selected
 For iAttachmentCounter = 0 To UBound(varAttachments)
' Add the selected file as an attachment
 .Attachments.Add varAttachments(iAttachmentCounter)
 Next iAttachmentCounter

' Define some properties of the Outlook email item
 .Subject = "Type your subject here..."
 .Body = "Type your message here"
 .To = "rm@msofficegurus.com.br"

' Display the email in Outlook
 .Display
 End With

 Set objAppOutlook = Nothing
 Set objEmail = Nothing
End Sub

In this section, you learned some important aspects of VBA programming such as enumeration,
classes, and external libraries. Enumeration helps you standardize data entry by collecting
values that belong to a predetermined category. Classes, on the other hand, help you
encapsulate code that would be difficult to handle otherwise and, by doing so, you are
able to streamline your programming.

Finally, you revisited referencing external libraries and learned how to interact with Outlook.
This method can be used for any other library registered in your system.

Although this book was not supposed to cover all aspects of VBA, it covered the most important
aspects so that you can now start digging further in order to discover more under the surface
you touched here.

www.it-ebooks.info

http://www.it-ebooks.info/

44

Excel Programming with VBA Starter

People and places you should get to know
If you need help with Excel, here are some people and places which will prove invaluable.

Official sites
ÊÊ Homepage: http://office.microsoft.com/en-us/

ÊÊ Manual and documentation: http://office.microsoft.com/en-us/excel-help/
excel-help-and-how-to-FX101814052.aspx?CTT=97

ÊÊ Blog: http://blogs.office.com/b/microsoft-excel/

Resources
ÊÊ API Viewer is an application that exposes Windows APIs, which you can use in your VBA

code. You can download the application from http://www.activevb.de/rubriken/
apiviewer/index-apiviewer.html.

ÊÊ A list of Excel MVP's websites is found at http://www.mvps.org/links.html#Excel.

Articles and tutorials
Here is a selection of VBA code samples that will help you hone your coding skills:

ÊÊ Excel ActiveX Data Objects (ADO) coding: http://www.excelguru.ca/list.
php?category/49-Excel-ADO

ÊÊ Interact with Outlook from Excel: http://www.msofficegurus.com/post/Creating-
Outlook-2007-Rules-from-Excel-2007.aspx

Community
ÊÊ Official forums: http://answers.microsoft.com/en-us/office/forum/excel

ÊÊ Unofficial forums: http://www.msofficegurus.com.br/forum/indice.html and
http://www.mrexcel.com

Blogs
Here's a list of blogs or sites you should have at hand:

ÊÊ Excel charting: http://peltiertech.com/

ÊÊ Excel sundries: http://spreadsheetpage.com/

ÊÊ Excel coding: http://www.excelguru.ca/ and http://www.cpearson.com

ÊÊ Excel tips: http://www.rondebruin.nl/

ÊÊ Office articles: http://www.msofficegurus.com.br/

www.it-ebooks.info

http://www.it-ebooks.info/

45

Excel Programming with VBA Starter

Twitter
Here is a list of some Twitter accounts you may want to follow:

ÊÊ https://twitter.com/#!/microsoft_excel

ÊÊ https://twitter.com/#!/exceldashboards

ÊÊ https://twitter.com/#!/MrExcel

ÊÊ For more Open Source information, follow Packt at http://twitter.com/#!/
packtopensource

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
Addin 3
Add method 23
API Viewer 39
Application Programming Interface (APIs) 3

B
blogs

URLs 44
bugs 11

C
classes

about 32-40
graphical representation 34

Const 10

D
debugging 11
Dim 10
Do-Until loop 17-19
Do-While loop 17-19
Dynamic-link Libraries (DLLs) 3

E
early binding 20
enumeration 31, 32
Excel

blogs 44
twitters 45
URLs, for Official Sites 44
URLs, for resources 44

Excel ActiveX Data Objects (ADO) coding
URL 44

Excel VBA Starter 1
explicit variable declaration 9
external libraries 40-42

F
FileSystemObject 20
For Each-Next Loops 15
For-Next loops 13-15
functions

about 24, 25
built-in functions 26-28

I
Immediate window

about 11
code, executing 12
displaying 11
problems, debugging in code 11
procedure or function, calling 12
uses 11

implicit declaration 9
Interact with Outlook from Excel

URL 44

L
late binding 21
loops

Do-Until loop 17-19
Do-While loop 17-19
For Each-Next Loops 15
For-Next loops 13-15
working with 13

www.it-ebooks.info

http://www.it-ebooks.info/

[48]

M
macro

about 4
recording 4
recording, from Developer tab 4-6
recording, from status bar 4

macro-enabled workbook
saving 7

module
adding 8

O
Object Browser 8
Object Model (OM) 16
objects

dimensioning 20-22
instantiating 20-22

Official forums
URL 44

optional argument 23

P
private variable 10
public variable 10

R
referencing 16
required argument 23
routines 23

S
SheetIndex 24
Static 10
subroutines 23, 24

T
twitters

URLs 45

U
Unofficial forums

URL 44
User-defined Functions (UDFs) 3

V
variables

about 9
working with 9

VBA
about 1, 3
code, executing 6, 7
features 3
functions 3
Immediate window 11, 12
macro-enabled workbook, saving 7
module, adding 8
objects, browsing 8, 9
using 3
variables, working with 9, 10

VBA programming
about 13
Do-Until loop 17-19
Do-While loop 17-19
For Each-Next loops 15
For-Next loops 13-15
loops, working with 13
objects, dimensioning 20-22
objects, instantiating 20-22
subroutines 23
user-defined functions 24

VBA programming features
about 31
classes 32-39
enumeration 31
external libraries 40-42

Visual Basic for Applications. See VBA

www.it-ebooks.info

http://www.it-ebooks.info/

About the author
Robert Martin is an Excel MVP and Microsoft Certified Professional. With a background in
finance, his career has ranged from being an IT Director of an investment bank in London to
doing charity work in Africa, before moving to Brazil in 2007 and setting up an IT consultancy
firm and then authoring training (audiovisual and written) material on Microsoft technologies.
Currently he works in Brazil as an IT Consultant.

Robert Martin has also authored the following books:

ÊÊ Excel Avançado, Digerati 2008

ÊÊ RibbonX: Customizing the Office 2007 Ribbon, Wiley 2008

ÊÊ Excel e VBA na Modelagem Financeira: Uma Abordagem Prática, Axcel Books 2005

I would like to thank my family who is always supportive in everything I do. I would also like
to thank all those people who, directly or indirectly, made this piece of work possible.

www.it-ebooks.info

http://www.it-ebooks.info/

About the reviewers
Jan Karel Pieterse is a self-employed Excel expert and Microsoft Office developer. He has
been running his own company (www.jkp-ads.com) since 2003 and has been an Excel MVP since
2002. Jan Karel was revision author for the book Excel 2007 VBA programming for Dummies.

Peter M Taylor is a creative Software Developer with an interest in Excel VBA to make solutions
for business. His career spans over a period of 16 years working on main frame systems within
telecommunications. At the end of 2005 Peter was ready for a career change and new challenges,
and an opportunity opened up in the Health Care industry supporting industry-related applications.
In his spare time, Peter updates his blog, making creative solutions for a fictional business, at
http://www.peterlearningabout.blogspot.com.au.

I would like to extend my thanks to Meeta Rajani from Packt Publishing for inviting me to
review this book, and my family, especially my wife Karen, for the time in making this book
review possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Excel Programming with VBA Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to continue
its focus on specialization. This book is part of the Packt Enterprise brand, home to books published on
enterprise software – software created by major vendors, including (but not limited to) IBM, Microsoft
and Oracle, often for use in other corporations. Its titles will offer information relevant to a range of
users of this software, including administrators, developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it first
before writing a formal book proposal, contact us; one of our commissioning editors will get in touch
with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Excel 2010 Financials Cookbook
ISBN: 978-1-849691-18-5 Paperback: 260 pages

Powerful techniques for financial organization, analysis,
and presentation in Microsoft Excel

1.	 Harness the power of Excel to help manage your
business finances

2.	 Build useful financial analysis systems on top of
Excel

3.	 Covers normalizing, analysing, and presenting
financial data

VSTO 3.0 for Office 2007
Programming
ISBN: 978-1-847197-52-8 Paperback: 260 pages

Get to Grips with Programming Office 2007 using Visual
Studio Tools for Office

1.	 A step-by-step guide for brand-new Office
developers who want to explore programming with
VSTO

2.	 Precise information on programming in Microsoft
InfoPath, Word, Excel, PowerPoint, Outlook, Visio,
and Project 2007 using VSTO

3.	 Create your own fully featured Office extensions

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	www.PacktPub.com
	www.PacktLib.PacktPub.com
	Table of Contents
	Excel Programming
with VBA Starter
	So, what is VBA?
	The basic features of VBA
	What kind of things can you do with it?
	How can you use this technology within your existing projects?

	Recording a macro, adding modules, browsing objects, and variables
	Recording a macro
	Option 1 – Recording a macro from the status bar
	Option 2 – Recording from the Developer tab

	Executing your code
	Saving a workbook containing macros
	Adding a module
	Browsing objects
	Working with variables
	The Immediate window
	And that's it

	Quick start – VBA programming
	Working with loops
	Method 1 – For-Next loops
	Method 2 – For Each-Next Loops
	Method 3 – Do-While and Do-Until loops

	Dimensioning and instantiating objects
	Subroutines and user-defined functions
	Subroutines
	Functions

	Top features you'll want to know about
	Enumeration
	Classes
	External libraries

	People and places you should get to know
	Official sites
	Resources
	Articles and tutorials
	Community
	Blogs
	Twitter

	Index

